Plant power: A new method to model how plants move water globally

Earth systems models are an important tool for studying complex processes occurring around the planet, such as those in and between the atmosphere and biosphere, and they help researchers and policymakers better understand phenomena like climate change. Incorporating more data into these simulations can improve modeling accuracy; however, sometimes, this requires the arduous task of gathering millions of data points. Researchers, including UConn Department of Natural Resources and the Environment Assistant Professor James Knighton, Pablo Sanchez-Martinez from the University of Edinburgh, and Leander Anderegg from the University of California Santa Barbara, have developed a method to bypass the need for gathering data for over 55,000 tree species to better account for how plants influence the flow of water around the planet. Their findings are published in Nature Scientific Data.

Plant power: A new method to model how plants move water globally
Earth systems models are an important tool for studying complex processes occurring around the planet, such as those in and between the atmosphere and biosphere, and they help researchers and policymakers better understand phenomena like climate change. Incorporating more data into these simulations can improve modeling accuracy; however, sometimes, this requires the arduous task of gathering millions of data points. Researchers, including UConn Department of Natural Resources and the Environment Assistant Professor James Knighton, Pablo Sanchez-Martinez from the University of Edinburgh, and Leander Anderegg from the University of California Santa Barbara, have developed a method to bypass the need for gathering data for over 55,000 tree species to better account for how plants influence the flow of water around the planet. Their findings are published in Nature Scientific Data.